

FaceInput: A Hand-Free and Secure Text Entry System through Facial Vibration

Presenter: Yandao Huang

Maoning Guan, Wenqiang Chen, Yandao Huang, Rukhsana Ruby, Kaishun Wu

Shenzhen University, Shenzhen, China

SECON' 19, Boston

2019/6/12

Background

The screen size is getting smaller, and so it is the input interface which makes the interactive experience poorer.

Background

There are many applications in the wearable devices, which require the text input interface.

Existing Input Methods

01 Simple Typing

Small Size User Unfriendly

02 Finger Tracking

Too Slow

03 Speech Input

Disturbing Poor Noise Resistance Sensitive Information

Existing Input Methods

FingerIO²

Opposite-side interaction is not available for users whose hands are fully occupied with other tasks.

1. Wenqiang Chen, et.al. ViType: A Cost Efficient On-Body Typing System through Vibration, IEEE SECON, 2018.

2. Rajalakshmi Nandakumar, et.al. FingerIO: Using active sonar for fine-grained finger tracking, ACM CHI, 2016.

Existing Input Methods

Float ¹

FingerT9²

One-handed interaction is also not available for users whose hands are fully occupied with other tasks.

 Ke Sun, et.al. Float: One-Handed and Touch-Free Target Selection on Smartwatches, ACM CHI, 2017.
Pui Chung Wong, et.al. FingerT9: Leveraging thumb-to-finger interaction for same-side-hand text entry on smartwatches, ACM CHI, 2018.

How to overcome the limitations of a small screen for smart watches with a hand-free interaction?

Text entry system——FaceInput

Observation

Speaking different keys (e.g., 0,1,2,...,9) → unique vibration profile

-10

-20

Design Goals and Challenges

A available system in most of the daily user scenarios.

2. Robust enough to give the correct output when some variations occur.

3. Efficient with low time and computation overhead.

Architecture

The architecture of FaceInput.

Architecture

The architecture of FaceInput.

Sensing

Denoising

Segmentation

 Piezoelectric ceramic sensor Diameter: 20 mm Thickness: 0.4 mm
A Raspberry Pi with an ADC
(a) (b)

> **Denoising**

Human mobility(e.g., walking)

Sensing

Denoising

Segmentation

Human mobility(e.g., walking)

A Butterworth band pass filter in the 10 to 1000 Hz range.

 To Remove the low-frequency noise caused by DC & human mobility(less than 10Hz) and highfrequency noise.

Architecture

The architecture of FaceInput.

Feature Extraction—MFCC

Example of the extracted MFCC features.

Information in the **Time Domain**

Information in the **Frequency Domain**

Classification Algorithm

Hidden Markov Model (HMM)

Architecture

The architecture of FaceInput.

Runtime Calibration and Adaptation

Sensor Displacement on the face

How to deal with the deviation?

Voice strength variation

Runtime Calibration and Adaptation

Sensor Displacement on the face

Voice strength variation

Update with candidate keys

Evaluation

Experimental Setup

- 10 virtual keys on T9 layout
- Each participant spoke each key for 20 times
- 30 participants collected 6,000 keystrokes

Evaluation

Accuracy—Baseline detection and classification

	Key0	Key1	Key2	Key3	Key4	Key5	Key6	Key7	Key8	Key9	4
Key0	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Ľ
Key1	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Key2	0.00	0.00	0.98	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Key3	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.6
Key4	0.01	0.00	0.01	0.00	0.98	0.00	0.00	0.00	0.00	0.00	0.0
Key5	0.00	0.02	0.00	0.00	0.00	0.97	0.00	0.00	0.00	0.00	0.4
Key6	0.01	0.00	0.00	0.01	0.00	0.00	0.95	0.01	0.02	0.00	0.4
Key7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	0.2
Key8	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.97	0.00	0.2
Key9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0

The average classification accuracy is 98.2%.

Accuracy—Impact of Training Set Size

Baseline accuracy: 98.2% (training set size: 10)

Training set size enlarge from 2 to 10, the accuracy rises from 92.2% to 98.2%.

Evaluation

Robustness—Variation

Gentle - Hard - All

Robustness—Voice Length

 Different voice length hardly affect classification accuracy (above 92%), which should owe to MFCC features and HMM algorithm.

The accuracy recovers to "All-All" situation.

Robustness——Calibration & Adaptation

The calibration and adaptation scheme can mitigate the variation impact, and it can recover the accuracy to 100% after a few tens of inputs

Robustness—Mobility

Items	Standing (Baseline)	Walking	Shaking the head
Accuracy	98.6%	94.9%	97.1%

While walking and shaking the head, the average accuracy is **96%**, which shows the robustness to human mobility.

The noise caused by human mobility is at low frequency (less than 10Hz), and we remove it via a Butterworth band pass filter in the 10 to 1000Hz range.

Evaluation

Accuracy

Robustness

User Study

User Study

Items	FaceInput	HUAWEI Watch2
Accuracy	97%	76%
Input Speed(s)	131	179
Score(0-5)	4	3

Comparison of **input accuracy**, **speed** and **user experience** between FaceInput and Huawei Watch2. (input **100 random numbers** from 0-9.)

FaceInput, as a text entry system with a hand-free interaction, does provide **higher** input accuracy, **faster** input speed, and **better** user experience.

Cost

- Initial training: 3 minutes
- Training duration: 2.2 seconds
- Latency : 0.25 seconds
- Sensor: 0.15 dollars.

Demonstration of FaceInput

Conclusion

- FaceInput firstly conducts a hand-free and secure text entry system via facial vibration with only one vibration sensor.
- Our system achieves high recognition accuracy for ten keys with accuracy of 98.2%.
- We evaluate the accuracy and robustness under different common conditions and design the calibration scheme to improve the robustness.
- FaceInput outperforms the input method in COTS smart watch.

Thank you!

@

Maoning Guan

guanmaoning2018@email.szu.edu.cn

Different voice length?

Secure text input?